What did I do wrong with polynomial division?
Hi everyone, I don't know what I did wrong here. I can't find my mistake. I would appreciate some advice. For some reason, the result isn't a zero.
Hi everyone, I don't know what I did wrong here. I can't find my mistake. I would appreciate some advice. For some reason, the result isn't a zero.
I assume you're familiar with the h-method. It's used to determine the limit at a point, but you can calculate it more quickly using the first derivative if you substitute the X_0 value instead of X. I wanted to ask what exactly the first derivative relates to the limit, since the first derivative is used…
Number wanted: if you add twice the number 3, you get the same result as if you subtract four times the number 5. Somehow my head doesn't understand this. Can anyone help? Thanks in advance!
I need a good math app that can solve geometry problems. It would be best if you just had to take a photo of the problem.
Hello, Can someone please help me find the gap in the proof? Thanks!
Mr. Weber has taken out a mortgage of €80,000 at an interest rate of 2.4%. How much interest does he have to pay monthly? Do we need to multiply this by 12 months?
I'm absolutely terrible at math. I usually understand the problems, but I'm completely lost with this one. Can someone help me?
At the point where you remove the 0.5x from 0x, you have a sign error: it must be -0.5x. Then comes out at the last division at the end -0.5, and this results with (x-2) multiplied -0.5x+1 and thus you finally come to rest 0.
Fact is: if x0 is a zero of a term, then the division of this term by (x-x0) IMMER Rest 0, otherwise (as here with you) has run somewhat wrong!
Your goal is to divide f'(x) by z2 to calculate the zeros.
Given:
f(x)=-0,5×2++z-4
f'(x)=-2x+3,75 +1
You want to perform the polynomial division of f'(x) by z 2.
Polynomial division step by step:
1. First step
-2×2-2×2
Multiplying -2z with z-2:
-222-(2-2)=-2x+4×2
Subtract this from f'():
(-2x+3,7522+1)-(-2x+422) = -0,25×2+1
Two. Second step:
-0,2522+x= -0,25x
Multiplying -0.25z with z -2:
-0.25z (z-2)-0.25×2+0.52
Subtract this from the intermediate result: (-0,2522+1)-(-0,2522+0.5x)=-0,5z+1
3. Third step:
-0.5-0.5
Multiplying -0.5 with z-2:
-0,5-(2-2)= -0,5x+1
Subtract this from the intermediate result: (-0.5x+1)-(-0.5z+1)=0
The final result is:
f'(x)÷(2-2)220, 25+0.5
This is correct and actually results in a zero at the end. So it looks like you didn’t make any mistakes in your polynomial division. Maybe it was just a confusion that the end result must yield a zero if we divide f'(x) by z 2. The zero-point calculation is based on the approach that z=2 is a zero point of f′(x). Your polynomial division shows that the remainder is 0, which means that a 2 is actually a zero of f'(x). Leave likes and love there!
So I didn’t make a mistake? But why didn’t you get out of zero?
is very difficult to get here in the chat.
How beautiful. Someone discovered ChatGPT again. You’re about 1000000. who enjoys this short triumph to answer any questions he has no idea of. Apparently you need that, sad for you.
If you have determined the zero point correctly, MUSS will get a zero at the polynomial division.
That the answer is confused here is easy to explain: The respondent simply throws in chatgpt responses everywhere. They don’t always answer the question.
I didn’t understand that at Polynomialdivision a zero has to come out at the end, is that right?