Turing machine, which one for each?
A question for theoretical computer scientists: Can there be a Turing machine that solves every predicate logic tautology? Perhaps (?) one can write a Turing machine for every given tautology that solves it—but can I build an automaton capable of resolving all tautologies? Can one build a Turing machine that builds a suitable Turing machine for a given problem? Can one build a specific Turing machine for every program that solves the halting problem for that specific program? But then one couldn't build a Turing machine that writes a specific Turing program for every program that solves the halting problem of that particular program.
Wen das überhaupt geht, dann ja.
Eher nicht. Aber hängt davon ab, was genau du damit meinst.
Je nach Programm geht das, ja. (Aber das ist dann halr nicht wirklich das Halteproblem.)
Offensichtlich nicht, denn sonst wäre das Halteproblem ja gelöst. Naja außer die entsprechende Turingmaschine hält selbst nicht.
Thank you very much! I had actually overlooked the fact that the machine that builds other machines and is thus supposed to contribute to decision-making must itself be able to maintain itself.