Positional relationships vectors with family parameters?

Hello, I'm having trouble with problem 11 c & d. In my approach to solving the equations in c, I have too many unknowns to solve. My teacher gave me the tip to think of values ​​for some numbers and then plug them into two coordinates. However, I can't seem to implement this in the problem. Maybe someone can help me! (Note: at b=9 and d=0.75, the direction vectors are collinear)

VG

(2 votes)
Loading...

Similar Posts

Subscribe
Notify of
3 Answers
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
gauss58
6 months ago

Schrittweise vorgehen:

Setze (c│0│3) als Schnittpunkt. Das führt zu:

(1) 1 + r * b = c

(2) a + 3 * r = 0

(3) 2 + 4 * r = 3

———————

(3) r = 1 / 4

(2) a = -3 / 4

(1) c = (b / 4) + 1

Parallelität ausschließen:

Richtungsvektoren sind parallel, wenn gilt:

(1) (1 / 4) * b = 3 * s

(2) (1 / 4) * 3 = s

(3) (1 / 4) * 4 = s * d

————————

(2) s = 3 / 4

(1) b = 9

(3) (1 / 4) * 4 = (3 / 4) * d ⇒ d = 3 / 4

Folglich ist d ≠ 3 / 4 , wenn die Richtungsvektoren nicht parallel verlaufen.

Wenn b = 9 , so ist c = 13 / 4

gluko269
6 months ago

Den richtungsvektor von h kannst du rauslassen und a,b und c so bestimmen, das g h am “stützvektorpunkt” (c, 0, 3) von h schneidet

Halbrecht
6 months ago
Reply to  gluko269

wie das ?