How are connections between neurons made in AI?

Hello,

How are the connections between two neurons in a Ki (with e.g. 10 neurons) calculated during training?

For example, by looking at which connection has the lowest error rate/highest score and then setting the connections?

Thanks for an answer

Just ask me if you don't understand the question.

TheCPP

(1 votes)
Loading...

Similar Posts

Subscribe
Notify of
2 Answers
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
covid69
2 years ago

Connections between neurons are not discrete (on or off) but are simply numerical values ​​that indicate the strength of the connection. A value of 0 means that the activations of the previous layers are multiplied by 0—as if the connection were not present. The values ​​of the connections can be arbitrarily large and can even be negative.

Neural networks are typically represented using linear algebra. So, each layer of neurons is a vector containing the values ​​of the neurons. If you have A neurons in one layer and B neurons in the next, you can represent the connections with a BxA matrix.

To find the correct values ​​for the connections, the so-called loss function (which measures how good or bad the network is) is derived from the individual connection values ​​(called weights). Then, one performs "gradient descent." This procedure is called backpropagation.

triopasi
2 years ago

Das funktioniert überhaupt nicht so. Neuronen sind als mathematische Funktion definiert, die “Verbindungen” dahin sind Funktionsparameter, Eingaben sozusagen.

Man guckt auch nicht welche “Verbindung” die niedrigste Fehlerrate erreicht. Das Netz wird als globales optimiert. Der normalerweise genutzte Ansatz nennt sich Backpropagation. Letztendlich sind das mathematisch betrachtet Ableitungen.