For light itself, no time passes?
But how is that? If I understand the energy theorem correctly, the sum of all energies in a closed temporal and spatial system is constant. Wouldn't that mean that where there is no time, there is also no energy? But light does have energy.
Hallo tilp11,
in der Tat hat Licht Energie, wobei die der einzelnen Photonen zur Frequenz des Lichtstrahls, dem sie angehören, proportional ist. Diese Energie ist aber nur in Deinem Ruhesystem als “stationärem” Beobachter überhaupt vorhanden.
Stell Dir vor, Du beschleunigst gleichförmig in Bewegungsrichtung eines Laserstrahls, um irgendwann mit diesem Lichtstrahl mithalten zu können (was natürlich nie gelingen wird).
Dann würde das Licht nicht relativ zu Dir langsamer werden, sondern langwelliger, d.h., die Frequenz verringerte sich in Deinem jeweiligen momentanen Ruhesystem (und zwar in gleichen Zeiten um denselben Faktor), was eben auch bedeuten würde, dass jedes Photon immer weniger Energie hätte; außerdem kämen auch noch weniger Photonen in gleichen Zeitspannen bei Dir vorbei bzw. an.
Asymptotisch würde dieses Licht also für Dich verschwinden. Etwas schnoddrig formuliert könnte man sagen, “aus seiner eigenen Perspektive existiert ein Photon gar nicht” bzw. es hat gar keine “eigene Perspektive”. Das gilt für alles, das sich mit genau c bewegt: Es besitzt keine Ruheenergie, nur – von der Wahl des Bezugssystems abhängige – kinetische Energie und ist daher nicht etwas, das sich bewegen kann, sondern es ist quasi seine eigene Bewegung.
Das hängt natürlich mit der Struktur der Raumzeit zusammen:
Zwei Ereignisse Ě₁ und Ě₂ heißen zeitartig getrennt, wenn es ein Koordinatensystem Σ⁰ gibt, in dem sie gleichortig sind, d.h., auf derselben Position in Σ⁰ mit dem zeitlichen Abstand Δτ = τ₂ − τ₁, der Eigenzeit, stattfinden. Das ist die Zeitspanne, die eine lokale in Σ⁰ stationäre Uhr U⁰ direkt messen würde.
In einem anderen, von einer Uhr U aus definierten Koordinatensystem Σ, in dem sich U⁰ geradlinig-gleichförmig bewegt (wodurch wir uns Σ natürlich stets so ausgerichtet denken können, dass seine x-Richtung die Bewegungsrichtung von U⁰ ist), werden Ě₁ und Ě₂ an unterschiedlichen Orten und i.Allg. auch in unterschiedlichen Entfernungen von U stattfinden.
Von U aus kann man also die Zeiten t₁ und t₂ nicht direkt messen, sondern muss sie aus Messwerten berechnen und dabei die zusätzliche Annahme machen, dass sich U nicht bewegt. Geometrisch betrachtet projiziert man Ě₁ und Ě₂ also auf die Weltlinie (WL) von U (= Zeitachse von Σ). Die auf diese Weise gewonnene Zeitspanne Δt = t₂ − t₁ heißt Σ- oder U- Koordinatenzeit und ist, wie die Bezeichnung sagt, eine Koordinatendifferenz. So betrachtet ist es gar nicht mehr so ungewöhnlich, dass sie sich von Δτ unterscheidet (sie ist länger), denn eine Koordinatendifferenz ist selten mit der Distanz identisch.
Außerdem haben Ě₁ und Ě₂ in Σ noch den räumlichen Abstand Δx = x₂ − x₁ = v∙Δt, wobei v die Geschwindigkeit von U⁰ relativ zu U ist. Der Zusammenhang zwischen Eigenzeit und den Koordinatendifferenzen ist durch MINKOWSKIs Abstandsquadrat
(1) Δτ² = Δt² − (Δx⁄c)²
gegeben, und wie man an dieser Formel sieht, geht Δτ für Δx⁄c → Δt gegen 0.
Für Δx⁄c = Δt ist Δτ = 0. In diesem Fall haben wir es aber auch nicht mehr mit zeitartig getrennten, sondern mit lichtartig getrennten Ereignissen (z.B. Du sendet ein Signal und ich empfange dieses Signal) zu tun. Anders als im Raum, wo zwei Punkte, deren Abstand 0 ist, identisch sein müssen, können also auch unterschiedliche und definitiv nicht zusammenfallende Ereignisse den Abstand 0 haben.
Für Δx⁄c < Δt käme für Δτ ein imaginärer Zahlenwert heraus. Solche Ereignisse heißen raumartig getrennt, was bedeutet, dass es ein Koordinatensystem gibt, in dem sie im räumlichen Abstand Δς gleichzeitig stattfinden.
Den erhält man, indem man die rechte Seite der Gleichung (1) umdreht und alles mit c² multipliziert:
(2) Δς² = Δx² − c∙Δt²
Then light does not exist for itself. Right?
Then light does not exist for itself. Right? But is that somehow not what speculative, where no energy is talking about a perfect, nothing.”
Then light does not exist for itself. Right? But is that somehow not what speculative if no energy, because of a perfect, nothing?
No, it’s not speculative. The red displacement by removing light source and receiver from one another is fact. And if the pace at which they move away from each other, c, this red shift would exceed any measure.
Thanks for the good answer. Because if light for itself has no energy has answered my question. Is there an unfamiliar idea for me, for example, when I think of radio waves, I can only hear radio because the radio receives waves, but now these waves are not supposed to exist for themselves, because no energy is coming?
It’s fun and something serious. “If I’m dead, I don’t exist anymore.”
I’m thinking about the joke when kids play hide and say to the child make your eyes there you’re gone and nobody finds you.
Thank you for the star!
Sure. But I think of the creation of the universe, should have arisen from nothing, was no energy. As some people think energy can never be lost for me but is not quite right, because as I know the energy conservation rate, it is only valid in a temporally spatially completed system. So if no time then no energy and the conservation rate of time do I not know. But isn’t that at the beginning nothing was because no energy was speculative?
Actually, there is no “from the perspective of the light” in relation to the special relativity theory, because that violates the theory that the speed of light in each reference system is the same (c). However, if you slip into the role of a photon as a thought experiment, you can’t use the rest of the relationships (time dilation and length contraction) anymore because you leave the frame by the thought experiment alone.
In the theory of relativity, however, there is the principle that one can freely choose the reference system.
So I choose the perspective of light.
If you can’t do that again you’re talking the basis of relativity theory
If you don’t think exactly what it is necessary to adhere to as ANAHMEN in the theory of relativity, the theory no longer works.
Alein’s long-term contraction (as in fact shorter one way) can be reproduced with a simple example.
If the relativity theory does not allow any other thought experiments than its own assumptions, then it is unusable.
Look this video on. That’ll be well explained. Provided you can English.
You say that so easy, I can’t. Why don’t you explain that? If light has energy, then after the conservation rate of energy there must also be time, but according to the theory of relativity no time should pass for light itself.
The answer is simple. Light has no energy for itself, so time for light only passes for us, for itself it has no energy, in principle there is no light for itself and what does not exist has no time.
But if I have to admit, I cannot imagine that the light for myself does not exist at all.
Denk logisch nach, dann brauchst du keine Videos die die selben abstrusen Aussagen immer nur wieder holen.
Es geht jetzt um die angeblich faktische Verlangsamung von Ereignissen und faktisch Verkürzung der Länge.
Gehen wir davon aus man könnte ein Objekt auf Lichtgeschwindigkeit bringen (vereinfacht die Rechnungen und Vorstellungen im Vergleich zu anderen Geschwindigkeiten)
Frage:
Was Kontrahiert deiner Meinung nach in der Länge ?
1: Das Objekt, das mit Lichtgeschwindigkeit reist ?
(Bei Lichtgeschwindigkeit 0 Länge? )
Was passiert dann mit der Dichte des Materials aus dem das Raumschiff besteht ?
Nehmen wir 1 m^3 Gold und bringen ihn auf 86,6% Lichtgeschwindigkeit
Er war 1m hoch, 1m breit und 1m lang . Die Dichte ist ca 20 kg pro dm^3.
Welche Maße und welche Dichte hat er bei 86,6% Lichtgeschwindigkeit?
2: Der Weg, den das Objekt zurücklegt?
Der Goldwürfel fliegt zwischen Planet A und Planet B. Die Beiden sind 1 Lichtjahr voneinander entfernt.
(0 Weg , also 0 Abstand, zwischen A und B bei Lichtgeschwindigkeit? )
Der Würfel fliegt wieder mit 86,6% Lichtgeschwindigkeit.
Wie lang ist nun der Weg den er fliegt?
Wenn der Weg faktisch (physikalisch) kürzer wird , was passiert dann mit der Gravitation zwischen den Planeten?
Zeiche jeweils eine Skizze (oder mach ein Video )
——-
Die Relativitätstheorie sagt doch aus , das gerade die Lichtgeschwindigkeit in jedem Bezugsystem gleich ist !
Jeder sieht Licht immer gleich schnell, egal wie schnell er selbst ist.
Ein Raumschiff ,das mit Lichtgeschwindigkeit fliegt und die Scheinwerfer anschaltet sieht doch angeblich dieses Licht mit Lichtgeschwindigkeit von sich fortfliegen.
Dazu gibt es hunderte Frage hier und immer genau die Antwort , das sich das Licht dann immer noch mit Lichtgeschwindigkeit entfernt.
Wie siehst du das ?
3: Das Licht entfernt sich mit Lichtgeschwindigkeit vom Raumschiff.
4: Das Licht kann sich nicht vom Raumschiff entfernen, weil beide gleich schnell sind.
Zu allen Fragen und Antworten bringe ich dann weitere Gedankenexperimente, bei denen du selbst nachrechnen kannst was dann passieren würde.
Lg
But it’s time everywhere, so your mind is falling. But in theory: Everything moves in space-time means where no time, because only space if only space then… Okay, I don’t know, because without time, nothing can move even if there’s room.
Yes, after the time for us, time goes for light. It doesn’t have to mean time for light. And all the time goes by for us, but it doesn’t mean it’s time for everything itself.
There is also time for light. Slow down.
It has to go for all time.
If light has energy then, after the set of maintenance of energy, time must also pass, but according to the theory of relativity there is no time for light for itself.
The answer is quite simple, for itself light has no energy it does not exist for itself. Only for us there is light has energy so only has time for us.
The “length contraction” is not an optical effect, because that would mean that objects moved relative to you are shortened Sewingwithout really being.
Objects that come to you even look longer, only by the factor √{(1 + v⁄c)/(1 − v⁄c)} instead of by the factor 1/(1 − v⁄c) to which you would expect to come to NEWTON and the aether hypothesis that objects that come to you should look.
This discrepancy between expectation (after the aether hypothesis) and what you would actually see makes the “length contraction”.
For the first time, I think you understood my example and my bill correctly.
I’ll figure this out.
The length contraction thus contrasts FAKTISCH NICHTS, everything remains in the length as it is.
It’s just an OPTIC effect.
You just want to do something different than it is NOW FAKTISCH because the light between A and B has a transit time.
Therefore, just as if the other one is in one place (Y), although he is already away from FAKTISCH (place X).
When the light arrives from place X at the resting observer, the astronaut is already at place Z .
Now I’m curious if we’ll talk to each other again.
Lg
Something about an hour of light, of course. But be careful: the statement “I only have to leave a light hour between A and B” is wrong!
A “Length contraction” the distance between A and B if I look at myself as stationary and A and B as moving. B does not look closer when I am still at A, but even further away; but I don’t see B where it is Now but where it is have you not been must be when it sent out the light I see now.
When B comes to me, I see B with decreasing delay; that’s why it looks much faster than it actually is. When B moves toward me with v, it looks as if it were on me with v/(1 − v⁄c); that would be 1.5c at 0.6c, at 0.8c it would be 4c and at 0.96c it would be 24c! Well noticed: B doesn’t move so fast, it just looks like that.
Then we’ll be back to the bill that you have to take with you for the 10 light years only for 1 day Proviant. While the observer on Earth is watching you for 10 years.
But the way would not be 10 light years longer because of the length contraction, but only …..Can you calculate it exactly for the questioner.
And what happens again with the gravitation, zb between 2 planets, when the path (10 light years) contrasts the length, because I fly from one to the other at almost speed of light….
You know, we’re turning around. … Let’s go through all examples and invoices again. … I have all our discussions and invoices…
Small invoice, for example :
The light “thinks” – oh, I would have to travel a distance for the 10 years at speed (10 light years)
It looks at his own time clock and starts a stopwatch because it wants to see how fast it is.
It comes to the finish, at 10 light years distance, looks at his own time clock and notes – horny, 0 time used for 10 light years.
Can you calculate how fast the light from his point of view was if there was no time from his point of view?
I calculated it must have been infinitely fast, from his point of view. But then it was faster than light, from his point of view, and according to the theory of relativity, that doesn’t matter what reference system.
Enjoy the same thought experiment with an astronaut flying 10 light years with his spaceship, with 299 792 457, 999m/s .
Maybe there’s another case to explain.
Lg
The light year is, however, the distance which the light relative to a reference clock U in one year U– coordinate time back. The actual time is equal to zero.
For example, if you were only approx. 2 cm⁄s less than c traveling to a target 10 light years away, you would after a grounded clock about 10 years. Your watch was slower than 86600 times, which is why you’re just over an hour Date (1 day are 86400 s, and 10 (julian) years are 3652.5 days.
(Now I come to my limits.)
A photon has a defined speed (everything the speed of light) and in order to get from one place to the other, a defined time also passes.
That’s what I’ve read. But how is this about my question in connection with energy and time?
And as I know according to the formulas of the relative movement, no more time passes at speed c. But relative movement or relativeist movement does not have light, there should be no light relative to the light nor light. Can’t you ask if these formulas are still valid in light?
For a photon, time really does not pass. This is a consequence of the special theory of relativity.
But I don’t have an experimental direct evidence.
As already said for us, time goes for light, but could one give a watch on the light, is there time? At least as I know about the theory of relativity should no time pass for light. But is that really right? Time dilation has something to do with relativistic movement, which means that one body or the other body could sometimes be seen as resting. If you sit in your room, your closet rests with you, but as the whole earth moves, the closet for the moon does not rest. But light can never be seen as resting, it does not have a relativistic movement. However, I’m just a layman and I can’t really imagine it with light.
There’s the unit light year. That’s the distance the light returns in a year. You’ve already defined it. A distance that was traveled in a past time. → Light passes for time.
Improve if I have a mistake.
Maybe you’re right. But should no time pass after the theory of relativity for light itself. Weis, however, unfortunately not how to confirm this experimentally.
If there was no time for light, it could not be a wave.
Because without time there is no movement
SlowPhil says it always becomes a long waver.
Without time, light becomes a line.
….it is a wave, so time must pass for light. ….
He also writes the light for himself has no energy. This means that the light does not exist for itself. And what does not exist has no time. Only for us there is light about it for light only time for us. Or rather, only for an observer of the light, time for light passes.
That’s not true. Time must exist only from the perspective of an observer, so that light for this Wave can be.
So either something physically moves in wave form or it moves straight.
Time is still defined in physics as facts for describing the sequence of events.
ZEIT, as “Etwas” independent does not exist. And if it doesn’t change the description of the sequence of events.
If light is moved physically rectilinearly, everyone can only describe it in a straight line. Whether there is a ZEIT or different.
The only thing that would change in the description would be to specify the frequency, but it must always move as a wave.
You can’t imagine that photons move in snake lines. When you send through a rope for a while, every spot in the rope moves up and down (or right or left or so), but the wave itself spreads “evenly” in the direction of the rope.
No, it is also a kind of distance between two successive events.
This is only correct as long as the events separated in time are, or at least separated by light, one of the events could therefore at least in principle cause the next.