Function well defined?
If the function f : R —> R is given by
f(x) := sin(cos(sin(cos(….(x))…)))
well-defined?
If so, does it have a derivative?
PS: I thought of that myself 🙂
If the function f : R —> R is given by
f(x) := sin(cos(sin(cos(….(x))…)))
well-defined?
If so, does it have a derivative?
PS: I thought of that myself 🙂
A binomial distribution exists when it is a Bernoulli chain, i.e. the conditions in the photo are met. What is a normal distribution in contrast to this and what difference does this make in stochastics tasks in the Abitur? So if I have to explain why the random variable is normally distributed, what should I…
Can someone please do the homework for me? No stupid comments, please, thanks.
Hey, the following function is: 1/(x)+1. I should first take the first derivative, then set it equal to zero, and then solve for x. I've already done this. Now I got the x-values: x1: 1 and x2: -1. We then divide the intervals: I1: -~;-1 I2:-1;1 I3: 1;+~ Afterwards, we always have to create a…
Can someone explain to me how to calculate the rate? For example, you have 25 g and it cost 200. Someone wants 2 g. How much should I give to make a profit? And the customer doesn't complain.
Schau Dir den Fixpunktsatz von Banach an.
Edit: Setze
und mit einem beliebigen Startwert x_0. Dann entspricht Deine Funktion f:
Die Frage ist nun, ob phi eine Kontraktion ist. Wenn ja, dann hätte sie einen eindeutigen Fixpunkt und der Grenzwert, also f(x_0), konvergierte dann für alle x_0 gegen diesen Fixpunkt.
Damit wären beide Deiner Fragen unmittelbar beantwortet.
Ja klar, dafür muss f kontrahierend sein. Aber worauf willst Du hinau?
Not only that, f must also be a self-map, which is the case here. Your sequence should always converge to the unique fixed point (no matter what you substitute for x).
I added something above.